

V 4.6

Revised 3/12/18

PHEZOTM Circuit

Reads pH

Range .001 - 14.000

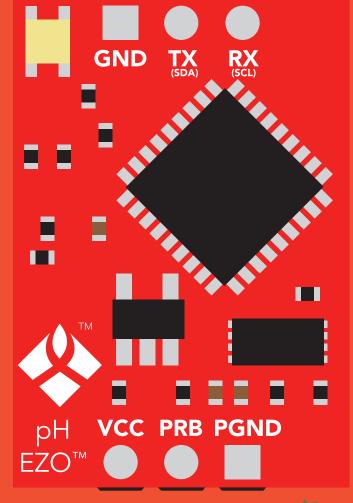
Resolution .001

Accuracy +/- 0.002

Max rate 1 reading per sec

Supported probes Any type & brand

Calibration 1, 2, 3 point


Temp compensation Yes

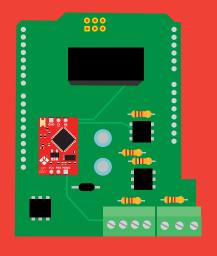
Data protocol UART & I²C

Default I²C address 99 (0x63)

Operating voltage 3.3V - 5V

Data format ASCII

PATENT PROTECTED


SOLDERING THIS DEVICE VOIDS YOUR WARRANTY.

This is sensitive electronic equipment. Get this device working in a solderless breadboard first. Once this device has been soldered it is no longer covered by our warranty.

This device has been designed to be soldered and can be soldered at any time. Once that decision has been made, Atlas Scientific no longer assumes responsibility for the device's continued operation. The embedded systems engineer is now the responsible party.

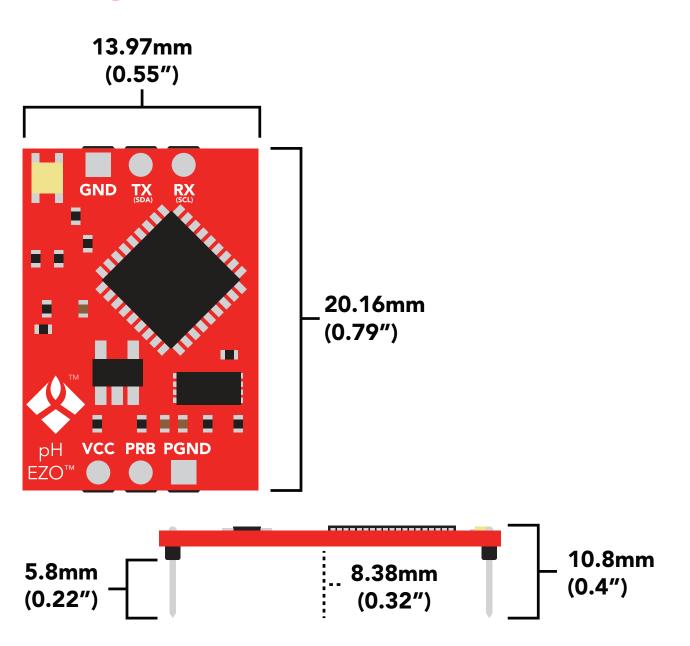
Get this device working in a solderless breadboard first!

Do not embed this device without testing it in a solderless breadboard!

Table of contents

Circuit dimensions	4	Calibration theory	7
Power consumption	4	Power and data isolation	9
Absolute max ratings	4	Correct wiring	11
EZO™ circuit identification	5	Available data protocols	14
Operating principle	6		

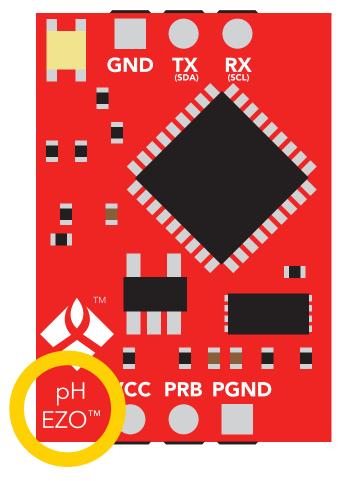
UART


UART mode	16
Default state	17
Receiving data from device	18
Sending commands to device	19
LED color definition	20
UART quick command page	21
LED control	22
Find	23
Continuous reading mode	24
Single reading mode	25
Calibration	26
Export/import calibration	27
Slope	28
Temperature compensation	29
Naming device	30
Device information	31
Response codes	32
Reading device status	33
Sleep mode/low power	34
Change baud rate	35
Protocol lock	36
Factory reset	37
Change to I ² C mode	38
Manual switching to I ² C	39

I²C

I ² C mode	41
Sending commands	42
Requesting data	43
Response codes	44
LED color definition	45
I ² C quick command page	46
LED control	47
Find	48
Taking reading	49
Calibration	50
Export/import calibration	51
Slope	52
Temperature compensation	53
Device information	54
Reading device status	55
Sleep mode/low power	56
Protocol lock	57
I ² C address change	58
Factory reset	59
Change to UART mode	60
Manual switching to UART	61

EZO[™] circuit dimensions



	LED	MAX	STANDBY	SLEEP
5V	ON	18.3 mA	16 mA	1.16 mA
	OFF	13.8 mA	13.8 mA	
3.3V	ON	14.5 mA	13.9 mA	0.995 mA
	OFF	13.3 mA	13.3 mA	

Power consumption Absolute max ratings

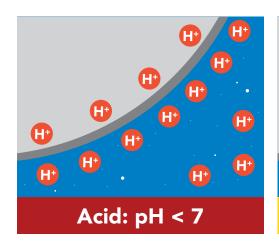
Parameter	MIN	TYP	MAX
Storage temperature (EZO™ pH)	-65 °C		125 °C
Operational temperature (EZO™ pH)	-40 °C	25 °C	85 °C
VCC	3.3V	5V	5.5V

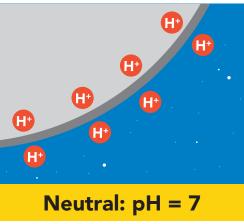
EZO[™] circuit identification

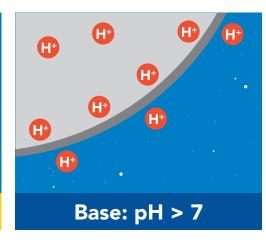
EZO[™] pH circuit

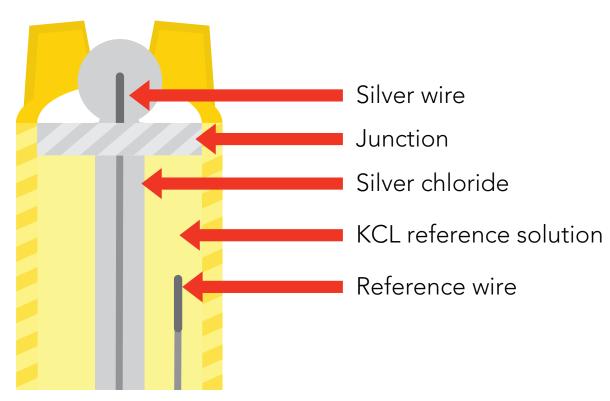
Viewing correct datasheet

Legacy pH circuit

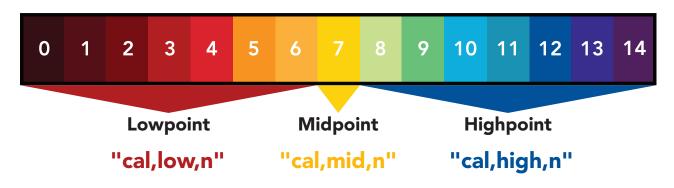

Viewing incorrect datasheet


Click here to view legacy datasheet



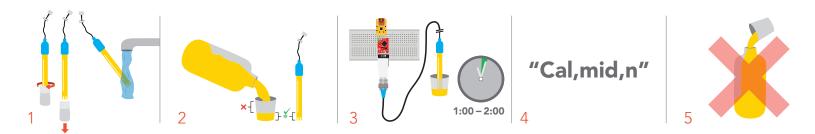

Operating principle

A pH (potential of Hydrogen) probe measures the hydrogen ion activity in a liquid. At the tip of a pH probe is a glass membrane. This glass membrane permits hydrogen ions from the liquid being measured to defuse into the outer layer of the glass, while larger ions remain in the solution. The difference in the concentration of hydrogen ions (outside the probe vs. inside the probe) creates a VERY small current. This current is proportional to the concentration of hydrogen ions in the liquid being measured.



Calibration theory

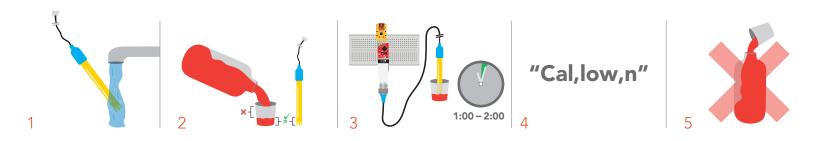
The most important part of calibration is watching the readings during the calibration process. It's easiest to calibrate the device in its default state (UART mode, continuous readings). Switching the device to I²C mode after calibration **will not** affect the stored calibration. If the device must be calibrated in I²C mode be sure to request readings continuously so you can see the output from the probe.


The Atlas Scientific EZO™ class pH circuit has a flexible calibration protocol, allowing for **single point**, **two point**, or **three point** calibration.

The first calibration point must be the Midpoint (pH 7)

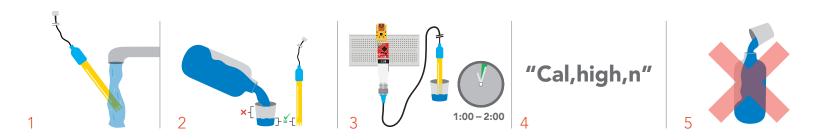
The EZO^{$^{\infty}$} pH circuits default temperature compensation is set to 25° C. If the temperature of the calibration solution is +/- 2° C from 25° C, consider setting the temperature compensation first. **Temperature changes of < 2° C are insignificant.**

Single point calibration



- 1. Remove soaker bottle and rinse off pH probe.
- 2. Pour a small amount of the calibration solution into a cup.
- 3. Let the probe sit in calibration solution untill readings stabalize (1 2 minutes).
- 4. Calibrate the midpoint value using the command "Cal,mid,n".

 Where "n" is any floating point value that represents the calibration midpoint.
- 5. Do not pour the calibration solution back into the bottle.


Two point calibration

- 1. Rinse off pH probe.
- 2. Pour a small amount of the calibration solution into a cup
- 3. Let the probe sit in calibration solution untill readings stabalize (1 2 minutes).
- 4. Calibrate the lowpoint value using the command "Cal,low,n".

 Where "n" is any floating point value that represents the calibration lowpoint.
- 5. Do not pour the calibration solution back into the bottle.

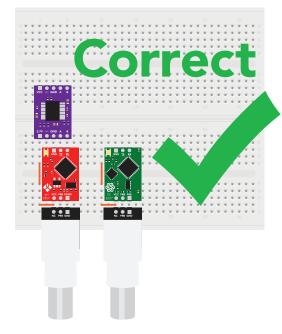
Three point calibration

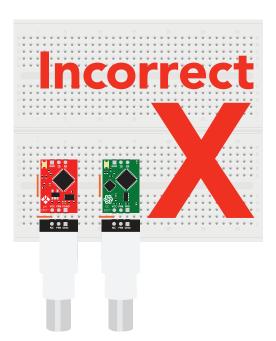
- 1. Rinse off pH probe.
- 2. Pour a small amount of the calibration solution into a cup
- 3. Let the probe sit in calibration solution untill readings stabalize (1 2 minutes).
- 4. Calibrate the highpoint value using the command "Cal,high,n".

 Where "n" is any floating point value that represents the calibration highpoint.
- 5. Do not pour the calibration solution back into the bottle.

Issuing the cal,mid command after the EZO™ pH circuit has been calibrated will clear the other calibration points. Full calibration will have to be redone.

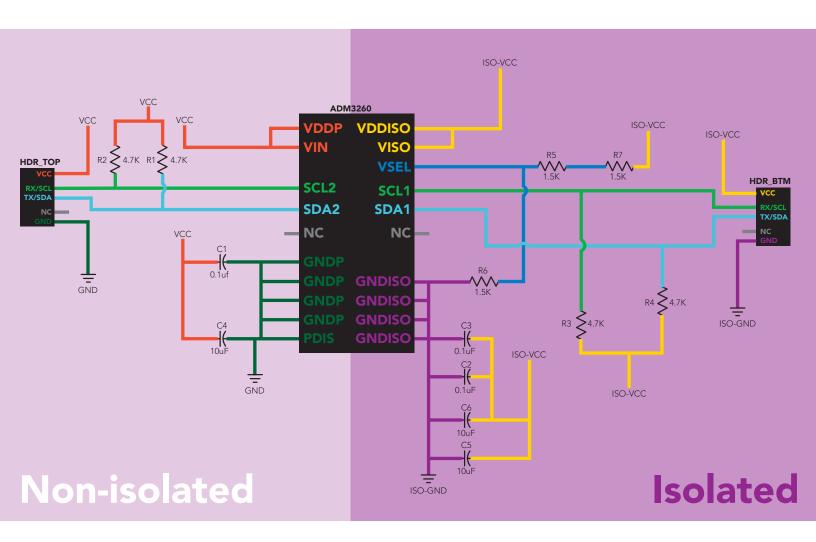
Power and data isolation


The Atlas Scientific EZO[™] pH circuit is a very sensitive device. This sensitivity is what gives the pH circuit its accuracy. This also means that the pH circuit is capable of reading micro-voltages that are bleeding into the water from unnatural sources such as pumps, solenoid valves or other probes/sensors.


When electrical noise is interfering with the pH readings it is common to see rapidly fluctuating readings or readings that are consistently off. To verify that electrical noise is causing inaccurate readings, place the pH probe in a cup of water by itself. The readings should stabilize quickly, confirming that electrical noise was the issue.

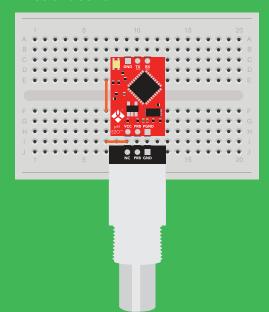
When reading pH and Conductivity or Dissolved Oxygen together, it is **strongly recommended** that the EZO^{$^{\text{M}}$} pH circuit is electrically isolated from the EZO^{$^{\text{M}}$} Conductivity or Dissolved Oxygen circuit.

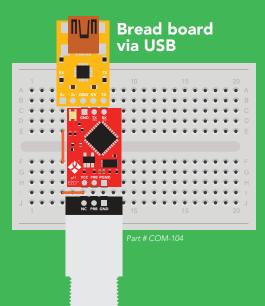
Basic EZO™ Inline Voltage Isolator


Without isolation, Conductivity and Dissolved Oxygen readings will effect pH accuracy.

This schematic shows exactly how we isolate data and power using the ADM3260 and a few passive components. The ADM3260 can output isolated power up to 150 mW and incorporates two bidirectional data channels.

This technology works by using tiny transformers to induce the voltage across an air gap. PCB layout requires special attention for EMI/EMC and RF Control, having proper ground planes and keeping the capacitors as close to the chip as possible are crucial for proper performance. The two data channels have a $4.7k\Omega$ pull up resistor on both the isolated and non-isolated lines (R1, R2, R3, and R4) The output voltage is set using a voltage divider (R5, R6, and R,7) this produces a voltage of 3.7V regardless of your input voltage.


Isolated ground is different from non-isolated ground, these two lines should not be connected together.

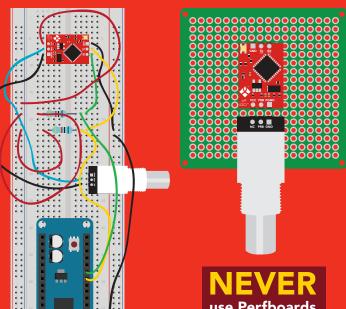


Correct wiring

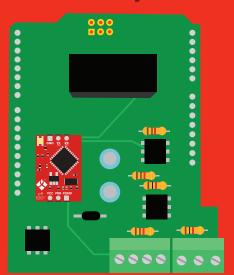
Bread board

Carrier board

USB carrier board

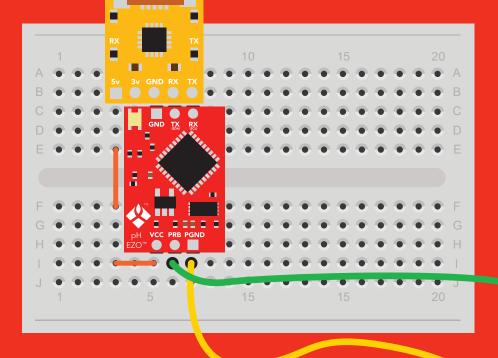

Incorrect wiring

Extended leads

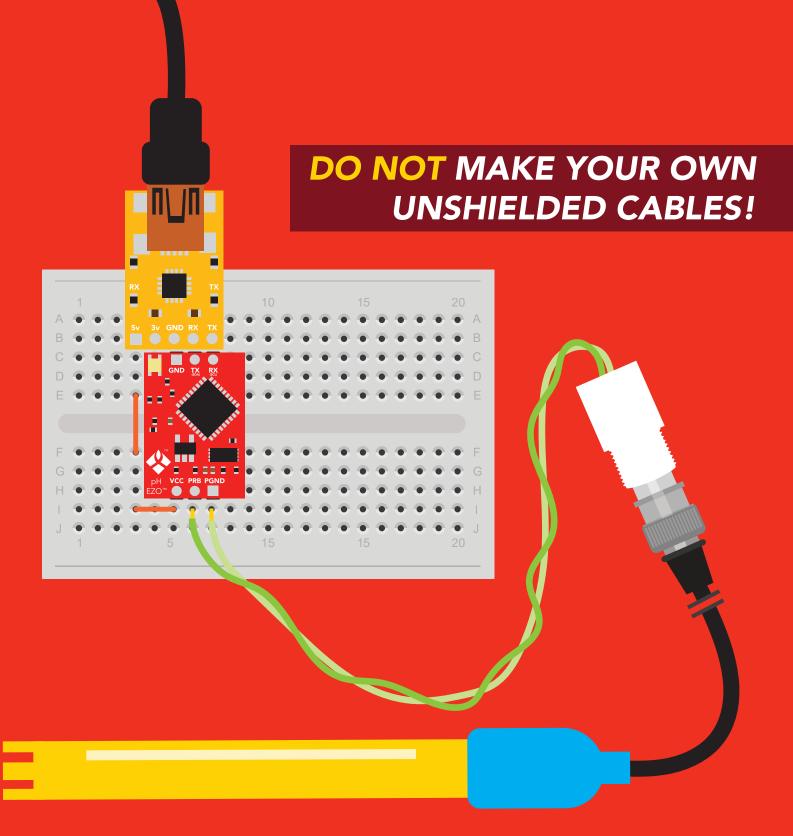

Sloppy setup

Perfboards or Protoboards

or Protoboards


*Embedded into your device

*Only after you are familar with EZO™circuits operation



NEVER EXTEND THE CABLE WITH CHEAP JUMPER WIRES!

DO NOT CUT THE PROBE CABLE WITHOUT REFERING TO THIS DOCUMENT!

ONLY USE SHIELDED CABLES. REFER TO THIS DOCUMENT!

Available data protocols

UART

Default

1²C

X Unavailable data protocols

SPI

Analog

RS-485

Mod Bus

4-20mA

UART mode

Settings that are retained if power is cut

Baud rate

Calibration

Continuous mode

Device name

Enable/disable response codes

Hardware switch to I²C mode

LED control

Protocol lock

Software switch to I²C mode

Settings that are **NOT** retained if power is cut

Find Sleep mode

UART mode

8 data bits 1 stop bit

no parity no flow control

Baud 300

1,200

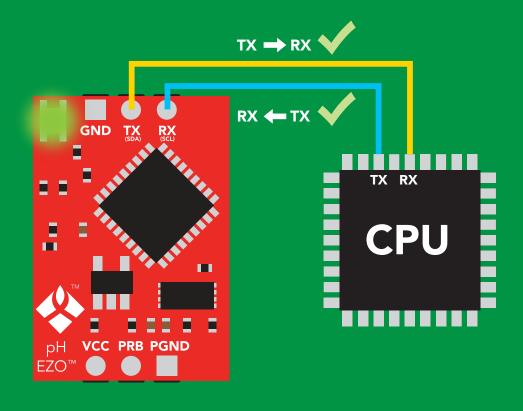
2,400

9,600 default

19,200

38,400

57,600


115,200

Vcc 3.3V - 5.5V

Data format

Reading pН

Units pН

Encoding ASCII

Format string

Terminator carriage return Data type

Decimal places

Smallest string

Largest string

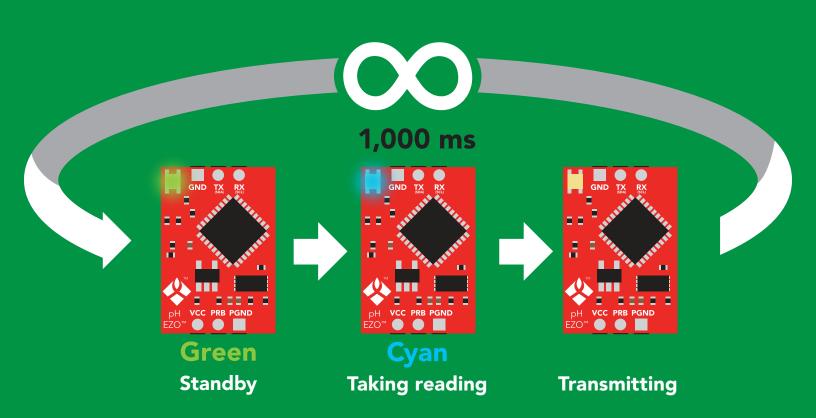
floating point

3

4 characters

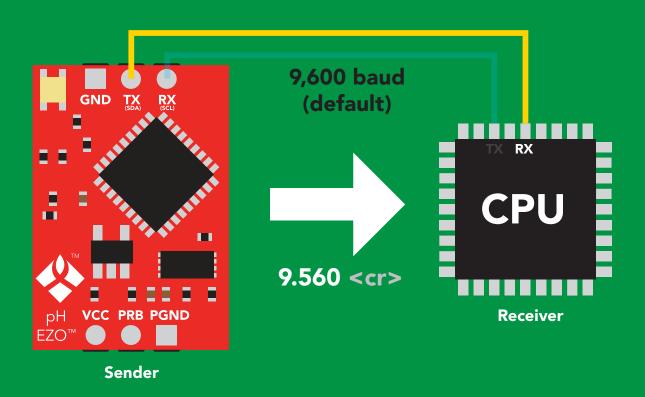
40 characters

Default state


Mode **UART**

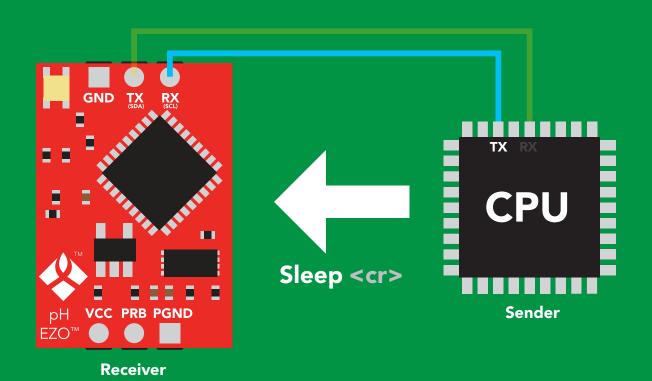
9,600 **Baud**

Readings continuous


1 reading per second **Speed**

LED on

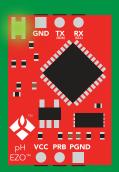
Receiving data from device



Advanced

ASCII: 9 . 39 2E 35 36 30 Dec: 57 46 53 54 48

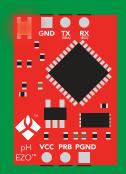
Sending commands to device



Advanced

ASCII: s 53 6C 65 65 70 83 108 101 101 112 Dec:

LED color definition



Cyan **Taking reading**

Changing baud rate

Command not understood

White Find

UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function		Default state
Baud	change baud rate	pg. 35	9,600
С	enable/disable continuous reading	pg. 24	enabled
Cal	performs calibration	pg. 26	n/a
Export/import	export/import calibration	pg. 27	n/a
Factory	enable factory reset	pg. 37	n/a
Find	finds device with blinking white LED	pg. 23	n/a
i	device information	pg. 31	n/a
I2C	change to I ² C mode	pg. 38	not set
L	enable/disable LED	pg. 22	enabled
Name	set/show name of device	pg. 30	not set
Plock	enable/disable protocol lock	pg. 36	disabled
R	returns a single reading	pg. 25	n/a
Sleep	enter sleep mode/low power	pg. 34	n/a
Slope	returns the slope of the pH probe	pg. 28	n/a
Status	retrieve status information	pg. 33	enable
т	temperature compensation	pg. 29	25°C
*ОК	enable/disable response codes	pg. 32	enable

LED control

Command syntax

<cr> LED on default

L,0 <cr> LED off

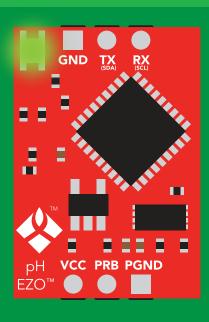
L,? <cr> LED state on/off?

Example

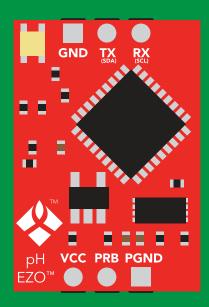
Response

L,1 <cr>

*OK <cr>


L,0 <cr>

*OK <cr>


L,? <cr>

?L,1 <cr> or ?L,0 <cr>>

*OK <cr>

L,1

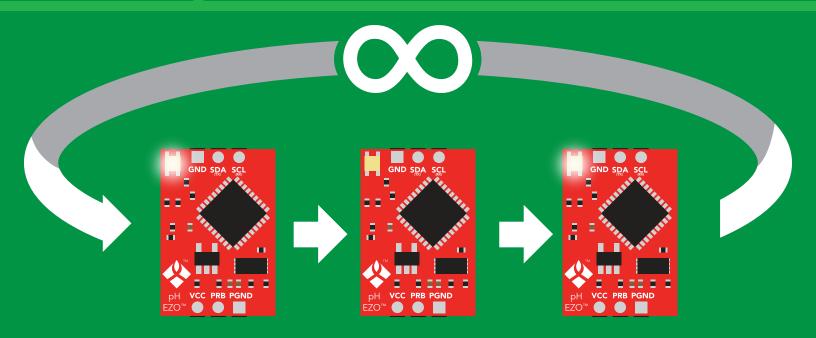
L,0

Find

Command syntax

This command will disable continuous mode Send any character or command to terminate find.

Find <cr> LED rapidly blinks white, used to help find device*


*This command is only available for firmware version 2.10 and above.

Example

Response

Find <cr>

*OK <cr>

Continuous reading mode

Command syntax

```
C,1 <cr> enable continuous readings once per second
                                                      default
```

C,n <cr> continuous readings every n seconds (n = 2 to 99 sec)*

C,0 <cr> disable continuous readings

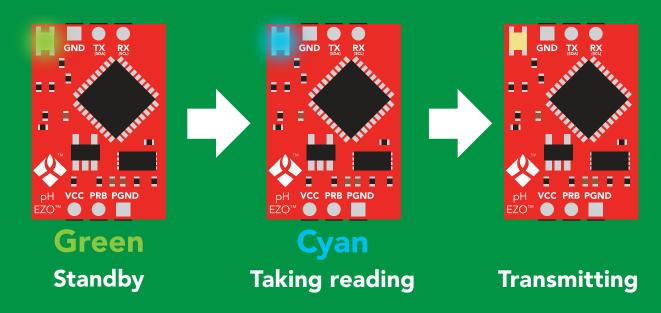
C,? <cr> continuous reading mode on/off?

*This command is only available for firmware version 2.10 and above.

Example Response C,1 <cr> *OK <cr> pH (1 sec) <cr> pH (2 sec) <cr> pH (n sec) <cr> C,30 <cr> *OK <cr> pH (30 sec) <cr> pH (60 sec) <cr> pH (90 sec) <cr> C,0 <cr> *OK <cr> **C,?** <cr> ?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr>

Single reading mode

Command syntax


R <cr> takes single reading

Example

Response

R <cr>

9.560 <cr> *OK <cr>

Calibration

Command syntax

Issuing the cal, mid command after the EZO™ pH circuit has been calibrated, will clear the other calibration points. Full calibration will have to be redone.

Cal, mid, n single point calibration at midpoint <cr>

two point calibration at lowpoint Cal,low,n <cr>

Cal, high, n < cr> three point calibration at highpoint

Cal, clear delete calibration data <cr>

device calibrated? Cal,? <cr>

Example

Response

Cal, mid, 7.00 < cr>

*OK <cr>

Cal, low, 4.00 < cr>

*OK <cr>

Cal, high, 10.00 < cr>

*OK <cr>

Cal, clear <cr>

*OK <cr>

Cal,? <cr>

?Cal,0 <cr> or ?Cal,1 <cr> or

?Cal,2 <cr> or ?Cal,3 <cr>

*OK <cr>

Export/import calibration

Command syntax

Export: Use this command to save calibration settings Import: Use this command to load calibration settings to one or more devices.

Export <cr> export calibration string from calibrated device*

<cr> import calibration string to new device* **Import**

Export,? <cr> calibration string info*

*This command is only available for firmware version 2.10 and above.

Example

Export,? <cr>

Response

10,120 <cr>

Response breakdown 10, 120

of strings to export # of bytes to export

Export strings can be up to 12 characters long, and is always followed by <cr>

Export <cr>

Export <cr>

(7 more)

Export <cr>

Export <cr>

59 6F 75 20 61 72 <cr> (1 of 10)

65 20 61 20 63 6F <cr> (2 of 10)

6F 6C 20 67 75 79 <cr> (10 of 10)

*DONE

Disabling *OK simplifies this process

Import, n (FIFO)

Import, 59 6F 75 20 61 72 <cr> (1 of 10)

Slope

Command syntax

calibrating a pH probe issuing the slope command will show how closely (in percentage) the calibrated pH probe is working compared to the "ideal" pH probe.

Slope,? <cr> returns the slope of the pH probe

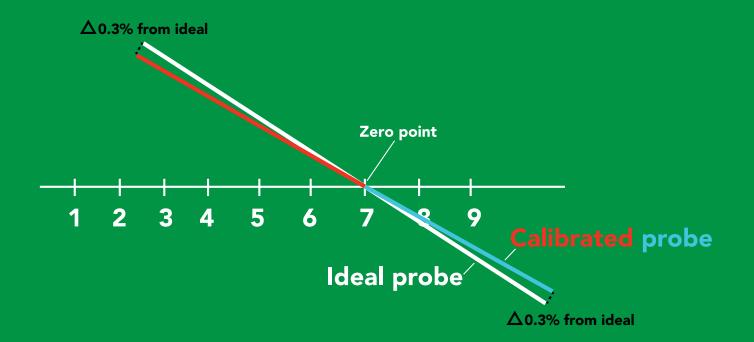
Example

Response

Slope,? <cr>

?Slope,99.7,100.3 <cr> *OK <cr>

Response breakdown


?Slope,

99.7,

100.3

99.7% is how closely the slope of the acid calibration line matched the "ideal" pH probe.

100.3% is how closely the slope of the **base** calibration matches the "ideal" pH probe.

Temperature compensation

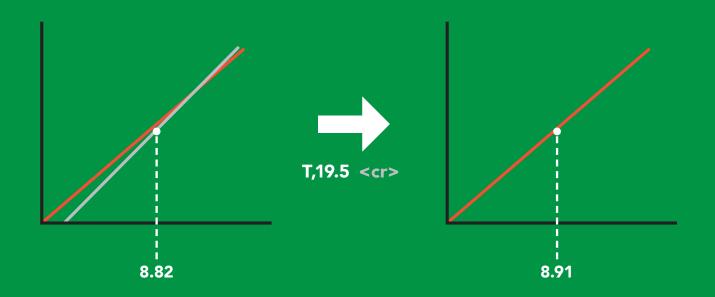
Command syntax

Temperature is always in Celsius

T,n <cr> n = any value; floating point or int

T,? <cr> compensated temperature value?

Example


Response

T,19.5 <cr>

*OK <cr>

T,? <cr>

?T,19.5 <cr> *OK <cr>>

Naming device

Command syntax

Name,n <cr> set name

Name,? <cr> show name

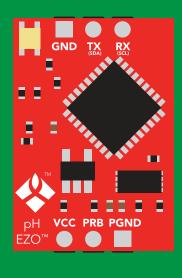
<u>n</u> = 7 8 9 10 11 12 13 14 15 16

Up to 16 ASCII characters

Example

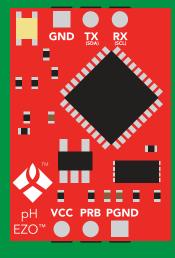
Name,zzt <cr>

Name,? <cr>


Response

*OK <cr>

?Name,zzt <cr>


*OK <cr>

Name,zzt

*OK <cr>

Name,?

Name,zzt <cr> *OK <cr>

Device information

Command syntax

i <cr> device information

Example

Response

i <cr>

?i,pH,1.98 <cr> *OK <cr>

Response breakdown

?i, pH, 1.98 Device Firmware

Response codes

Command syntax

*OK,1 <cr> enable response

default

*OK,0 <cr> disable response

*OK,? <cr> response on/off?

Example

Response

R <cr>

9.560 <cr>

*OK <cr>

*OK,0 <cr>

no response, *OK disabled

R <cr>

9.560 <cr> *OK disabled

*OK,? <cr>

?*OK,1 <cr> or ?*OK,0 <cr>

Other response codes

*ER unknown command

*OV over volt (VCC>=5.5V)

*UV under volt (VCC<=3.1V)

*RS reset

*RE boot up complete, ready

entering sleep mode *SL

*WA wake up These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Example

Response

Status <cr>

?Status, P, 5.038 < cr>

*OK <cr>

Response breakdown

5.038 ?Status, Voltage at Vcc Reason for restart

Restart codes

powered off

software reset

brown out

watchdog W

unknown

Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Sleep <cr> enter sleep mode/low power

Example

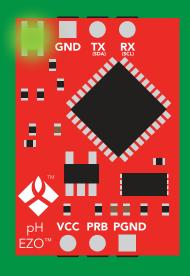
Response

Sleep

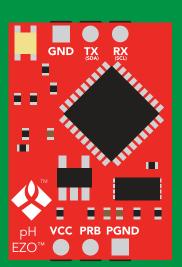
*SL

Any command

*WA <cr> wakes up device


5V

STANDBY SLEEP


16 mA

1.16 mA

13.9 mA $0.995 \, \text{mA}$

Sleep <cr>

Standby 16 mA

Sleep 1.16 mA

Change baud rate

Command syntax

Baud,n <cr> change baud rate

Example

Response

Baud, 38400 < cr>

*OK <cr>

Baud,? <cr>

?Baud,38400 <cr> *OK <cr>

```
300
1200
2400
9600 default
19200
38400
57600
115200
```


Changing baud rate

*OK <cr>

Standby

Protocol lock

Command syntax

Locks device to UART mode.

Plock,1 <cr> enable Plock

default Plock,0 <cr> disable Plock

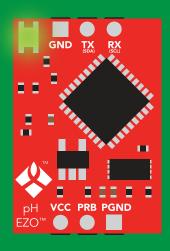
Plock,? <cr> Plock on/off?

Example

Response

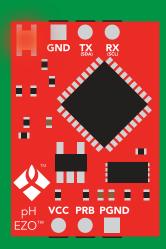
Plock,1 <cr>

*OK <cr>

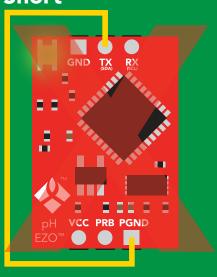

Plock,0 <cr>

*OK <cr>

Plock,? <cr>


?Plock,1 <cr> or ?Plock,0 <cr>

Plock,1


*OK <cr>

12C,100

cannot change to I²C *ER <cr>

Short

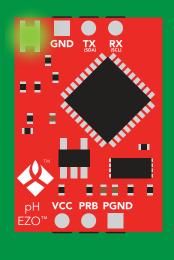
cannot change to I²C

Factory reset

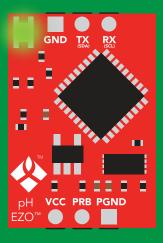
Command syntax

Clears calibration LED on "*OK" enabled

Factory <cr> enable factory reset


Example

Response


Factory <cr>

*OK <cr>>

Factory <cr>

*OK <cr>

*RS <cr> *RE <cr>

Baud rate will not change

Change to I²C mode

Command syntax

Default I²C address 99 (0x63)

I2C,n <cr> sets I2C address and reboots into I2C mode

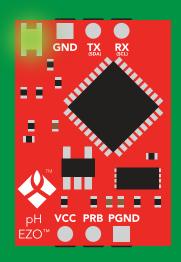
n = any number 1 – 127

Example

Response

12C,100 <cr>

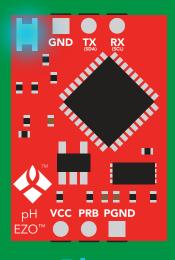
*OK (reboot in I²C mode)


Wrong example

Response

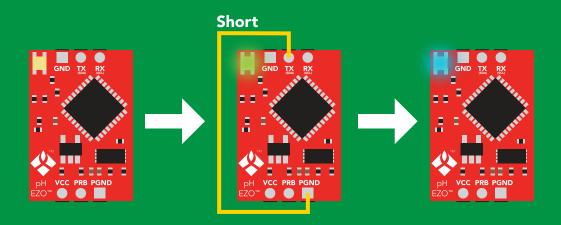
12C,139 <cr> n ≯ 127

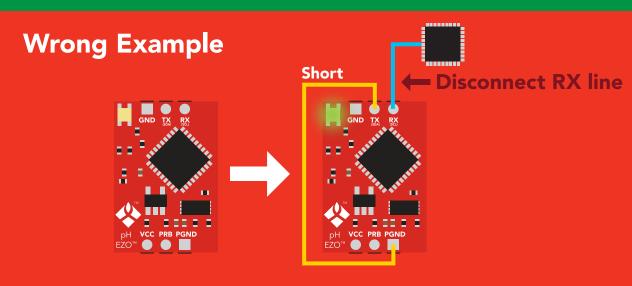
*ER <cr>


12C,100

Green *OK <cr>

(reboot)


Blue now in I²C mode


Manual switching to I²C

- Make sure Plock is set to 0
- Disconnect ground (power off)
- Disconnect TX and RX
- Connect TX to PGND
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Green to Blue
- Disconnect ground (power off)
- Reconnect all data and power

Manually switching to I²C will set the I²C address to 99 (0x63)

Example

l²C mode

The I²C protocol is considerably more complex than the UART (RS-232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

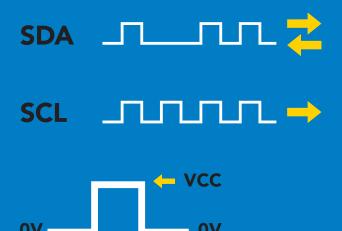
To set your EZO™ device into I²C mode click here

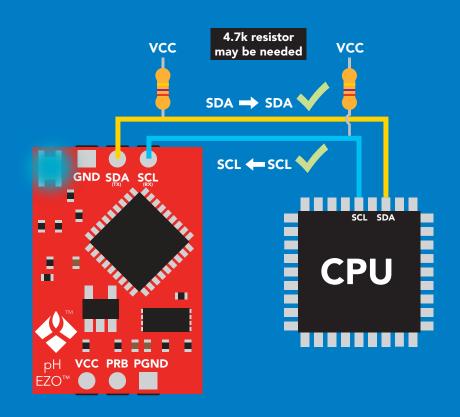
Settings that are retained if power is cut

Calibration
Change I²C address
Hardware switch to UART mode
LED control
Protocol lock
Software switch to UART mode

Settings that are **NOT** retained if power is cut

Find Sleep mode


I²C mode


I²C address (0x01 - 0x7F)

99 (0x63) default

3.3V - 5.5VVcc

Clock speed 100 - 400 kHz

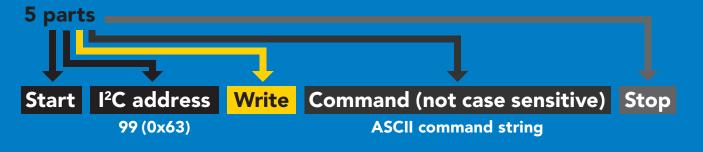
Data format

Reading pН

Units рH

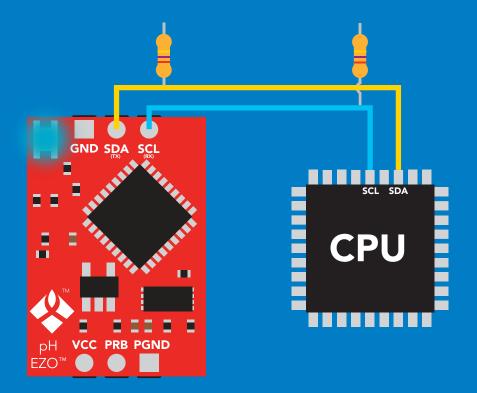
Encoding ASCII

string **Format**


Data type **Decimal places Smallest string Largest string**

4 characters 399 characters

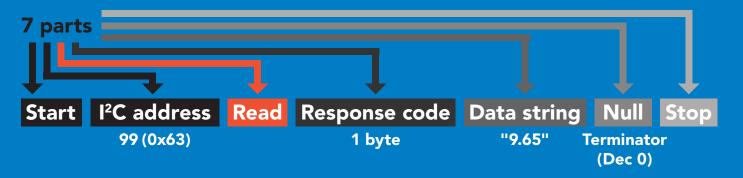
floating point

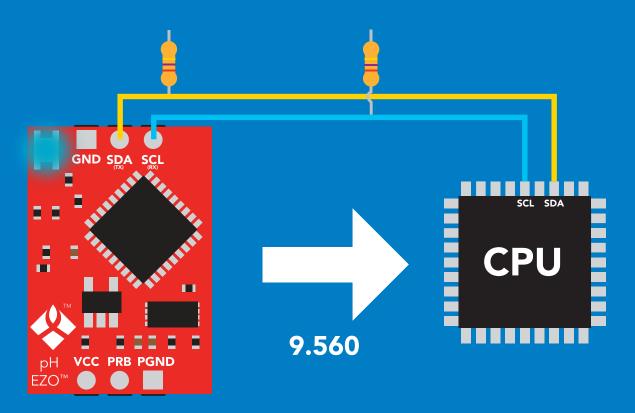


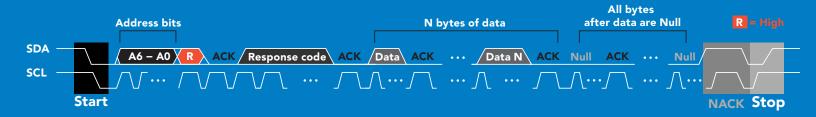
Sending commands to device



Example

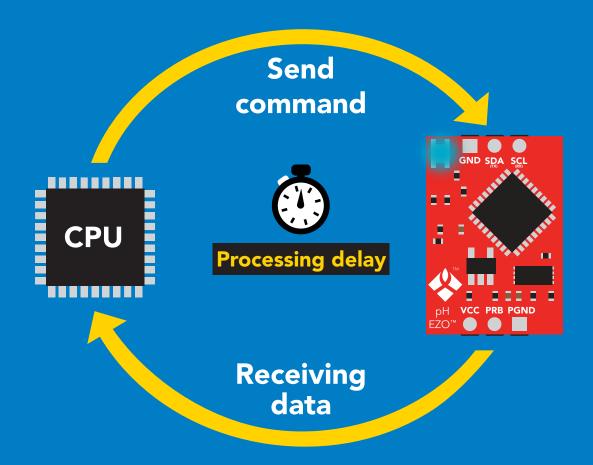



Advanced



Requesting data from device

Advanced



Response codes

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

Reading back the response code is completely optional, and is not required for normal operation.

Example

I2C_start;

I2C address:

I2C_write(EZO_command);

I2C_stop;

delay(300);

I2C start; I2C address; Char[] = I2C_read; I2C_stop;

If there is no processing delay or the processing delay is too short, the response code will always be 254.

Response codes

Single byte, not string

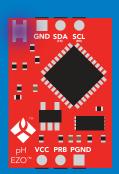
255 no data to send

254 still processing, not ready

2 syntax error

successful request

LED color definition



I²C standby

Green

Taking reading

Changing I²C ID#

Command not understood

White

Find

I²C mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function	
Baud	switch back to UART mode	pg. 60
Cal	performs calibration	pg. 50
Export/import	export/import calibration	pg. 51
Factory	enable factory reset	pg. 59
Find	finds device with blinking white LED	pg. 48
i	device information	pg. 54
I2C	change I ² C address	pg. 58
L	enable/disable LED	pg. 47
Plock	enable/disable protocol lock	pg. 57
R	returns a single reading	pg. 49
Sleep	enter sleep mode/low power	pg. 56
Slope	returns the slope of the pH probe	pg. 52
Status	retrieve status information	pg. 55
Т	temperature compensation	pg. 53

LED control

Command syntax

300ms processing delay

L,1 LED on

default

L,0 **LED** off

LED state on/off? **L,?**

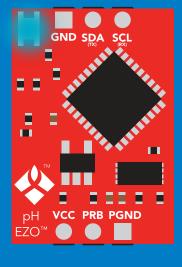
Example

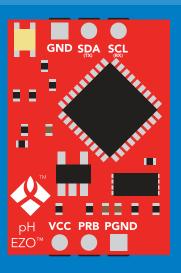
Response

L,1

L,0

L,?





L,0

Find

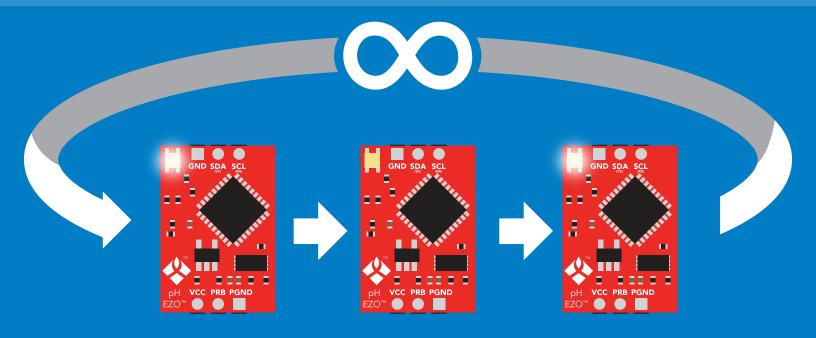
Command syntax

This command will disable continuous mode Send any character or command to terminate find.

Find <cr> LED rapidly blinks white, used to help find device*

*This command is only available for firmware version 2.10 and above.

Example


Response

Find <cr>

Taking reading

Command syntax

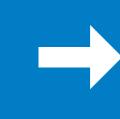
900ms processing delay

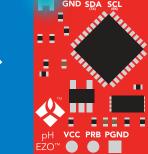
return 1 reading

Example

Response

R





Transmitting

Standby

Calibration

300ms processing delay

Command syntax

Issuing the cal, mid command after the EZO™ pH circuit has been calibrated, will clear the other calibration points. Full calibration will have to be redone.

Cal, mid, n single point calibration at midpoint

Cal,low,n two point calibration at lowpoint

Cal, high, n three point calibration at highpoint

Cal, clear delete calibration data

device calibrated? Cal,?

Example

Response

Cal, mid, 7.00

Cal, low, 4.00

Dec

Cal, high, 10.00

Cal, clear

Dec

Cal.?

or

ASCII

Dec

Export/import calibration

Command syntax

Export: Use this command to save calibration settings Import: Use this command to load calibration settings to one or more devices.

Export

export calibration string from calibrated device*

Import

import calibration string to new device*

Export,?

calibration string info*

*This command is only available for firmware version 2.10 and above.

Example

Response

Export,?

of strings to export # of bytes to export

Export strings can be up to 12 characters long

Export

(8 more)

Export

Export

Dec

59 6F 75 20 61 72 **ASCII**

(1 of 10)

Dec

65 20 61 20 63 6F

(10 of 10)

*DONE **ASCII**

Import, n (FIFO)

Import, 59 6F 75 20 61 72

ASCII

Slope

300ms processing delay

Command syntax

After calibrating a pH probe issuing the slope command will show how closely (in percentage) the calibrated pH probe is working compared to the "ideal" pH probe.

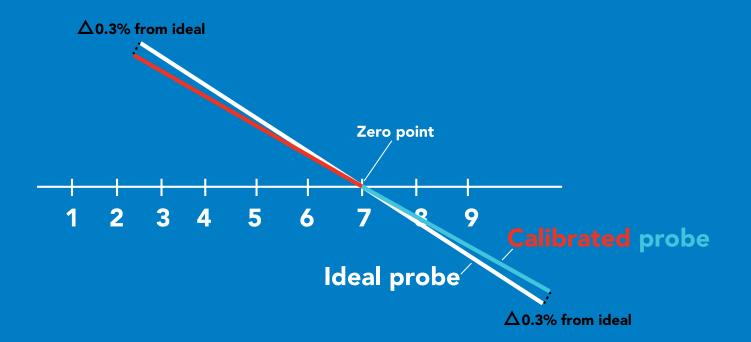
returns the slope of the pH probe Slope,?

Example

Response

Slope,?

?Slope,99.7,100.3


Response breakdown

?Slope, 99.7, 99.7% is how closely the slope of the **acid** calibration line matched the "ideal"

pH probe.

100.3

100.3% is how closely the slope of the **base** calibration matches the "ideal" pH probe.

Temperature compensation

Command syntax

300ms processing delay

Temperature is always in Celsius

- n = any value; floating point or int T_n
- **T,?** compensated temperature value?

Example

T,19.5

Response

T,?

?T,19.5

Device information

Command syntax

300ms processing delay

device information

?i,pH, 19.8 **ASCII**

Response breakdown

?i, 1.98 рH, Device **Firmware**

Reading device status

Command syntax

voltage at Vcc pin and reason for last restart

Example

Response

Status

?Status,P,5.038

ASCII

Response breakdown

?Status,

5.038

Reason for restart

Voltage at Vcc

Restart codes

powered off

software reset S

В brown out

watchdog W

U unknown

Sleep mode/low power

Command syntax

enter sleep mode/low power Sleep

Send any character or command to awaken device.

Example

Response

Sleep

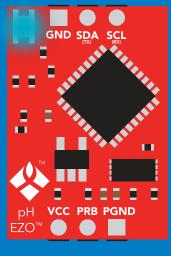
no response

Do not read status byte after issuing sleep command.

Any command

wakes up device

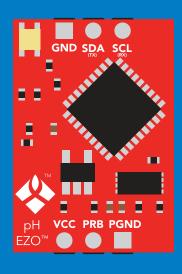
5V


STANDBY SLEEP

16 mA

1.16 mA

3.3V


13.9 mA $0.995 \, \text{mA}$

Standby

Sleep

Sleep

Protocol lock

Command syntax

300ms processing delay

Plock,1 enable Plock

Plock,0 disable Plock default

Plock,? Plock on/off? Locks device to I²C mode.

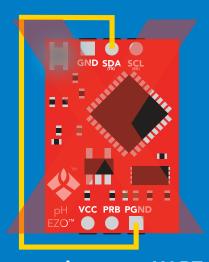
Example

Response

Plock,1

Plock,0

Plock,?


Plock,1

Serial, 9600

cannot change to UART

cannot change to UART

I²C address change

Command syntax

300ms processing delay

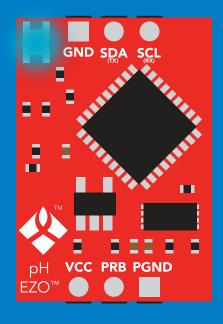
sets I²C address and reboots into I²C mode I2C,n

Example

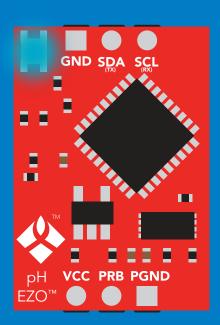
Response

12C,100

device reboot


Warning!

Changing the I²C address will prevent communication between the circuit and the CPU, until the CPU is updated with the new I²C address.


Default I²C address is 99 (0x63).

n = any number 1 - 127

12C,100

Factory reset

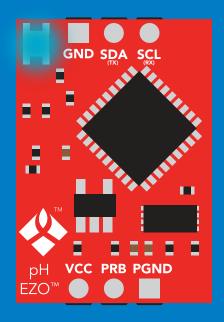
Command syntax

Factory reset will not take the device out of I²C mode.

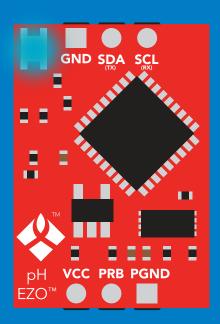
Factory enable factory reset

I²C address will not change

Example


Response


Factory

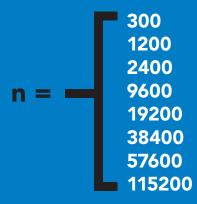

device reboot

Clears calibration LED on Response codes enabled

Factory

Change to UART mode

Command syntax

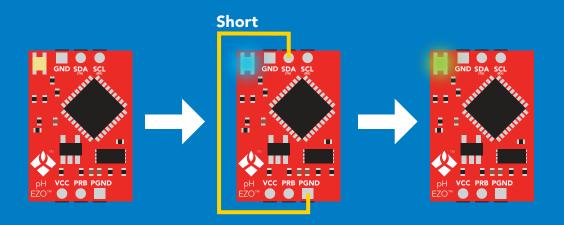

switch from I²C to UART Baud,n

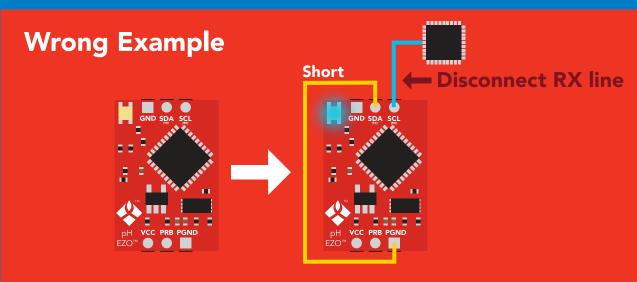
Example

Response

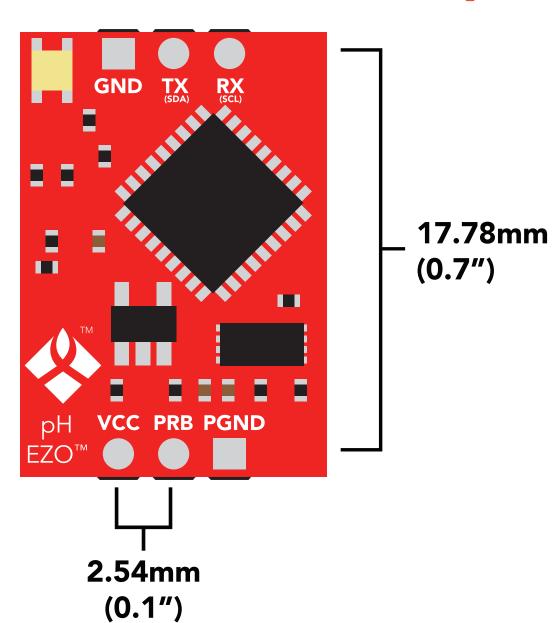

Baud, 9600

reboot in UART mode

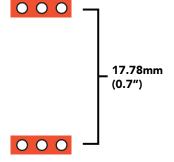




Manual switching to UART


- Make sure Plock is set to 0
- **Disconnect ground (power off)**
- Disconnect TX and RX
- Connect TX to PGND
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power

Example


EZO[™] circuit footprint

- In your CAD software place an 8 position header.
- Place a 3 position header at both top and bottom of the 8 position.
- Delete the 8 position header. The two 3 position headers are now 17.78mm (0.7") apart from each other.

Datasheet change log

Datasheet V 4.6

Added information to calibration theory on pg 7.

Datasheet V 4.5

Revised definition of response codes on pg 44.

Datasheet V 4.4

Added resolution range to cover page.

Datasheet V 4.3

Revised isolation information on pg 9.

Datasheet V 4.2

Revised Plock pages to show default value.

Datasheet V 4.1

Added new commands:

"Find" pages 23 & 46.

"Export/Import calibration" pages 27 & 49.

Added new feature to continous mode "C,n" pg 24.

Datasheet V 4.0

Added accuracy range on cover page, and revised isolation info on pg. 10.

Datasheet V 3.9

Revised calibration theory on pg. 7.

Datasheet V 3.8

Revised entire datasheet.

Firmware updates

V1.1 – Initial release (Oct 30, 2014)

• Change output to mg/L, then percentage (was previously percentage, then mg/L)

V1.5 – Baud rate change (Nov 6, 2014)

Change default baud rate to 9600

V1.6 – I²C bug (Dec 1, 2014)

• Fix I²C bug where the circuit may inappropriately respond when other I²C devices are connected.

V1.7 – Factory (April 14, 2015)

• Changed "X" command to "Factory"

V1.95 – Plock (March 31, 2016)

Added protocol lock feature "Plock"

V1.96 – EEPROM (April 26, 2016)

• Fixed glitch where EEPROM would get erased if the circuit lost power 900ms into startup

V1.97 - EEPROM (Oct 10, 2016)

Added the option to save and load calibration.

V1.98 – EEPROM (Nov 14, 2016)

Fixed glitch during calibration process.

V2.10 – (May 9, 2017)

- Added "Find" command.
- Added "Export/import" command.
- Modified continuous mode to be able to send readings every "n" seconds.

V2.11 – (June 12, 2017)

• Fixed "I" command to return "pH" instead of "PH".

Warranty

Atlas Scientific™ Warranties the EZO™ class pH circuit to be free of defect during the debugging phase of device implementation, or 30 days after receiving the EZO™class pH circuit (which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific[™] is the time period when the EZO[™] class pH circuit is inserted into a bread board, or shield. If the EZO™ class pH circuit is being debugged in a bread board, the bread board must be devoid of other components. If the EZO™ class pH circuit is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO™ class pH circuit exclusively and output the EZO™ class pH circuit data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO™ class pH circuit warranty:

- Soldering any part of the EZO[™] class pH circuit.
- Running any code, that does not exclusively drive the EZO™ class pH circuit and output its data in a serial string.
- Embedding the EZO™ class pH circuit into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific[™] does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific™ cannot possibly warranty the EZO™ class pH circuit, against the thousands of possible variables that may cause the EZO™ class pH circuit to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific™ devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific™ devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific™ devices can be soldered into place, however you do so at your own risk.

Atlas Scientific™ is simply stating that once the device is being used in your application, Atlas Scientific[™] can no longer take responsibility for the EZO[™] class pH circuits continued operation. This is because that would be equivalent to Atlas Scientific[™] taking responsibility over the correct operation of your entire device.